
ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4301 1

Simulation and Performance Evaluation of CPU

Scheduling Algorithms

Sultan Almakdi
1
, Mohammed Aleisa

2
, Mohammed Alshehri

3

Lecturer, College of Computer Science and Information System, Najran University, Najran, KSA 1,3

Lecturer, College of Science and Humanities at Alghat, Almajmaah University, Alghat, KSA 2

Abstract: An operating system provides numerous functions, such as I/O management, memory management, process

management, and file management. Since the operating system is a set of the programs that interacts with computer

hardware during executing time, process management is the most important function provided by an operating system.

CPU scheduling is extremely necessary, as it makes a multi-tasking environment that keeps the CPU and I/O devices
busy at all times which results in increased CPU utilization [1]. However, numerous scheduling algorithms have

already been designed to regulate the access of threads and processes to the CPU, such as FCFS-SJF-SRT-RR. We

simulated these scheduling algorithms and evaluated their performance (throughput, latency, utilization, turnaround

time, and waiting time) in a multi-processor environment.

Keywords: OS, CPU scheduling, Multitasking, FCFS, RR, SRT, SJF.

I. INTRODUCTION

The major purpose of multiprogramming is to have more

than one process running at all times. All computer

resources need to be scheduled before using them; thus,

scheduling is a main function provided by the operating

system [1]. Since the CPU is one of a computer’s main

resources, its scheduling technique is fundamental to

operation system design. When we have more than one

process that can be run, CPU scheduling determines which

process will be run.

As a result, resource utilization and overall system
performance will be affected by CPU scheduling, which is

very important [2]. There are four types of scheduling

involved in a multitasking system, with each solving a

scheduling problem for each area of operating system

functionality:thelong-term scheduler, mid-term scheduler,

and short-term scheduler.

A. Long-Term Scheduler

Thelong-term scheduler, or admission scheduler, is used to

decide which process ought to be brought to the ready

queue. When we have a process attempting to be executed,

the long-term scheduler decides whether to admit or delay

this process [1] [2].

B. Mid-Term Scheduler

The mid-term scheduler is used to temporarily remove

processes from the main memory and put them onto

secondary memory and vice versa. This can be generally

referred to as ―swapping processes out‖ or ―swapping

processes in.‖ [1] [2].

C. Short-Term Scheduler

The short-term scheduler is used to decide which

processes in the ready queue—in the memory—are to be
executed (allocated to a CPU) next, following a clock

interrupt, an input–output (I/O) interrupt, an OS call, or

another form of signal. Making scheduling decisions is

more frequent for the short-term scheduler than for the

long-term and mid-term schedulers. The short-term

scheduler can be either preemptive or non-preemptive. A

preemptive scheduler forces any process to exit the CPU

when it decides to allocate another process to the CPU. A

non-preemptive scheduler cannot force any process to exit

the CPU [1].

The design of a high-quality scheduling algorithm plays a

role in the success of a CPU scheduler. In addition, high-
quality CPU scheduling algorithms generally rely on

criteria such as throughput, CPU utilization rate, response

time, turnaround time, and waiting time. Therefore, the

main impetus of this work is to design a generalized,

optimum, high-quality scheduling algorithm suitable for

all types of jobs [3].

The main goal is to simulate the different types of CPU

scheduling algorithms. Processor scheduling is the

foundation of operating systems, and through advanced

study and innovation, we have seen major improvements

in computing power. In this paper, we will explore how

the algorithms compute resource allocations and
processing time, as well as their applications in the latest

computing innovations. Our key motivation was to use the

computing systems to reduce the cost of both the hardware

and software, while increasing efficiency at the same time.

Investments on software will increase significantly, both

in the development and deployment of software systems,

which will create the need to save on hardware

investments. Effective use of resources and the elimination

of upgrade costsare needed to save on hardware

investments. There have been significant advances in the

computing power of processors, which today are smaller,
cheaper, and more effective than 10 years ago. This

advancement can be attributed to a number of factors,

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4301 2

including up-to-date materials, better production methods,

and advancement in the understanding of computing

resources. Unlike a decade ago, we do not have over-

clocked processors or even cases where a processor is

overpowered.

This has led to the testing of the available processor

scheduling algorithms, in order to determine which is best
suited to simulate and measure. Our team faced a number

of challenges, in which we could not decide which

characteristic would give us the most conclusive results.

We wanted our results to be less complicated and easier to

implement. We overcame our challenge by starting from

the final result we wanted and working backwards, while

characterizing and differentiating the simulated

algorithms. Last but not least, we wanted to provide a

comparative analysis of the different algorithms that we

tested and measured.

II. SCHEDULING CRITERIA

Since each CPU scheduling algorithm has its own

properties, choosing a particular algorithm might favor

one class of processes over another. To choose which

algorithm to use in a particular situation, the properties of

the various algorithms must be considered. We suggest

several criteria to compare the CPU scheduling algorithms

[1]:

A. Utilization/Efficiency

The CPU must be kept busy with useful work 100% of the

time.

B. Throughput

The number of processes that completed per time unit.

C. Turnaround Time

The timefrom submitting a process to the time of

completion.

D. Waiting Time

The sum of the time that processes spend in the ready

queue.
E. Response Time

The time from process submission until producing the first

response.

F. Fairness:

Whether the processes share the CPU fairly.

An operating system must choose a process from the ready

queue to execute whenever the CPU becomes idle. The

short-term scheduler (or CPU scheduler) is the scheduler

who is responsible to carry out a process to the CPU. The

scheduler selects a process among those that reside in the
memory, are ready to be executed, and are allocated to the

CPU [5].

The ready queue contains the processes that are ready to

be executed, but is not necessarily a FIFO (first-in, first-

out) queue. It might be designed as priority queue, a FIFO

queue, simply an unordered linked list, or a tree. All the

processes in the ready queue are lined up and wait to be

allocated by the CPU. When multiple processeshave

competing requirements, the operating system must

allocate computer resources among them. The scheduleris

the component of the operating system responsible for

granting the CPU access to a list of several processes that

are ready to execute.

In the cases of the new and exit states, there is no choice,

in terms of scheduling. However, there is a choice in the

ready and running cases. Under non-preemptive

scheduling, when a process has been allocated to the CPU,
the process will not release the CPU until it terminates or

switches to the waiting state, such as I/O functions [1] [2].

III. CPU SCHEDULING ALGORITHMS

CPU scheduling is the process of determining which

process in the queue to allocate first to the CPU. There are

two types of scheduling algorithms: pre-emptive

scheduling and non–pre-emptive scheduling, which are

divided by how they handle clock interrupts [1] [2].

A. Pre-emptive Scheduling

This type of scheduling is runnable. Once the process has

been initiated by the CPU, it can be temporarily suspended
for a given period of time. The act of temporary

suspending a task or taking it away is what gives it the

name pre-emptive scheduling [1].

B. Non–Pre-emptive Scheduling

This process is a clear contrast to pre-emptive scheduling

because, once a process has been initiated in the CPU, it

cannot be suspended or taken away. This type of

scheduling differs from pre-emptive scheduling in a

number of ways since the scheduler executes the job when

the process terminates or when the process switches from

the running to the waiting state. Another difference is that,

unlike pre-emptive scheduling, the response times are
predictable. The overall treatment of all processes is fair;

even a high-priority job cannot displace the waiting job

[1].

C. Priority Allocation System

There was a need to divide processes into high-priority

and low-priority before introducing them into the

scheduler. A priority allocation system allows the

scheduler to select a process with high priority, rather than

a low-priority one. The process of priority allocation

starting with high-priority processes presented a challenge,

in which the low-priority processes were starved and
lacked time in the processor. A solution for this was to

change the priority allocating system, so that priority could

change not only according to whether a process was high

or low priority, but according to execution history and age.

Other ways that are used to assign priorities to processes

include [3] [5]:

a. Internal or Dynamic: The priorities are assigned

according to specific algorithms.

b. External or Statically: Priorities are assigned by

an external system manager before being scheduled to the

processor.

c. Hybrid: Priority is assigned by both internal and
external schemes.

D. Timer Interruption
Timer interruption is an important process that protects the

processes from getting stuck in an infinite loop, which will

lead to the system hanging. Timer interruption is both

system- and process-dependent, and is seen as a real-time

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4301 3

system. When a process is initiated in the CPU, the timer

begins and counts in an interval. The time interval can

expire; when it does, the process completes in the CPU. A

new process can be installed in the processor with the

scheduling decision.

A content switch is an installation process that involves

switching the processor’s context. The CPU carries a
number of tasks, which include registering all saved and

loaded processes, preparing the processes, and running the

processes, once they are ready. The registered files are

stored in the Process Control Block (PCB). The PCB has

all of the information about the processes, and each

process has a PCB associated with it. The PCB is vital,

since, other than being an important data structure, it

contains process stacks, process control information,

process register values, and process priority and process

identification information. The system experiences a

change in processes from one to another to prevent system
overload and poor performance, while maintaining the

processes at a minimum [1] [5].

IV. SIMULATED CPU SCHEDULING

ALGORITHMS

There are different types of CPU scheduling algorithms,

including: first-come, first-served, priority-based

scheduling, round robin, and shortest job first. Below is a

detailed look into each type of scheduling algorithm.

A. First-Come, First-Served (FCFS)

Of all the scheduling algorithms, this is the simplest and

most effective policy. The new process usually enters the

end of the schedule and goes on until it is complete, before
moving to the next queue. The FCFS goes by many

names, which are worth noting to avoid confusion: cycling

scheduling, first in, first out (FIFO), non-priority non-

preemptive FCFS, priority preemptive FCFS (PP-FCFS,

and priority non-preemptive FCFS (PNP-FCFS). These

priorities are mostly used in timeshared systems. Once the

process starts in the CPU, it holds until completion or

when the CPU is yielded. Like any other types of

scheduling, the FCFS has its own set of challenges, as the

system can get stuck when there is a heavy workload that

monopolizes the CPU. Due to this, there can be a lot of
wasted time, since the process is made to wait at the end of

the queue and might not get time in the CPU. This

challenge has been introduced addressed by introducing a

timer interruption, which limits the time of a given process

[3] [5].

B. Round Robin (RR)

 This is an improved version of the FCFS where arriving

processes are queued as circular and placed at the end of

the queue. The scheduler then selects the jobs that are first

and runs them in the CPU until they are completed. During

the process, if the time interval expires, that specific

process is placed at the end of the queue. The pros of using
the round-robin method is that it is simple; the cons are

that a lot of time is wasted if the job is too large and that

the quantum too small [4].

C. Shortest Job First: (SJF)

As the name suggests, this method of scheduling chooses

its priority based on which process has the smallest CPU

time requirement. The dispatcher selects the shortest jobs

in the queue and runs them to completion. One of its

advantages is that it has a quick turnaround time; on the

other hand starvation can occur, plus it cannot be

implemented [1].

D. Shortest Remaining Time (SRT)

This method of scheduling is similar to that of SJF, in the
sense that the scheduler will pick the processes that have

the shortest remaining time and move them in front of the

queue. When the CPU is running a process and another

process that is even shorter arrives, a preemption occurs,

which is an interruption. This leads to the division of the

process into two parts, thus creating additional context

switching. The additional overhead created leads to an

increase in both the waiting and response times. Longer

processes in the queue are affected significantly by the

process, which makes it hard to maintain a deadline. SRT

experiences starvation when the CPU is running multiple
small processes. Due to the different challenges involved

in this policy, it is not widely used; however, those who

still want to use it will need to use two different priorities

[3] [5].

V. SYSTEM DESIGN

We used C++ for our simulations because it allows us to

standardize the interface, use a common base, and utilize

our algorithm in a polymorphic way. We did not pay much

attention to the environment in which we ran the

simulation, since it was not affected by the operating

system or our platform of choice. We agreed to use a

personal laptop, which offered flexibility and made it
easier to gather results from each team member.

In the simulations, we accounted for variables like core

active time, number of cores, process waiting time, core

active time, and simulation duration. We simulated the

cores as a vector of process objects; we also inserted a

specialized idle process together with the vector, which we

simulated as an idle core. The simulation was for

scheduling algorithms, which are referred to as schedulers

in the source code. We wanted to determine which process

we could execute next and what the best scheduling
algorithm was. The algorithms we selected from the

common base class included: shortest-job-first (SJF),

shortest remaining time (SRT), first-come, first-served

(FCFS), and round robin (RR).

The basic schedulable unit for our design was that of a

process determined by its own lightweight class. We

excluded the priority-oriented scheduling algorithm, since

it only contributed performance drawbacks. We chose the

double-ended queue collection for the waiting and

completed queues in our design. We wanted to allow the

sorting of the different queues, in order to make our
presentation easier and also to optimize the scheduler

implementations. In this simulator, tasks or jobs can be

assigned to the simulator by generating an arrival time and

burst time for each task randomly; optionally, the user can

also assign tasks. The number of cores and number of

tasks are identified by the user.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4301 4

Fig.1. Simulator Main Interface

The above figure shows the main interface for our

simulator. A user will be asked to enter the number of

cores to use in the simulation; then, the user will be able to

enter any number of tasks or processes. Afterwards, the

user can select an algorithm by entering 1 for FCFS, 2 for
RR, 3 for SJF, or 4 for SRT. The user then has the ability

to enter the burst time and arrival time for each process or

let the simulator generate them. Then, the simulation

process will start by pressing the ENTER key on the

keyboard. The simulator can track the time until the

simulation is completed. Finally, the results will be shown

(see Figure 2).

Fig. 2. Results

VI. ANALYSIS, EVALUATION, AND FINAL

RESULTS

All of the measurements we collected from the various

simulations we ran were in the form of a set of variables,

core active time, process waiting time, process length,

simulation duration, and number of cores. The collected

variables were used to evaluate the scheduling algorithms.

We derived the statistical outcomes from the data we had

gathered from the variables. The scheduling criteria we

used included:

A. Average Waiting Time
The time the process took while waiting to execute.

B. Average Throughput

The number of processes completed successfully per time

unit.

C. Average Core Utilization

 The percentage of time the core remained active per total

simulation time.

D. Average Turnaround Time

It is a taken time to complete a process.

In the simulation, we left out the I/O bursting and its

intended effects, since we wanted to focus on the aspects
that affected CPU scheduling. We could also have used

average response time for measurement, but we

disregarded this approach because it is more specific to

individual process instructions and thus could not fulfill

out intended goal. All we wanted to do is distinguish the

processes by their arrival time and length.

Fig. 3. Avg core utilization for 100 tasks

As shown in the figure above, 100 tasks were tested with

different numbers of cores (i.e., 1, 2, 4, 8, 16, and 32

cores) using simulated scheduling algorithms (FCFS, RR,

SJF, and SRT). When the number of cores was increased,

the average core utilization decreased. However, the RR

algorithm had the highest average core utilization for all

numbers of cores. Moreover, as shown on the figure, SJF

and SRT are close to each other.

Fig.4. Avg throughput for 100 tasks

This figure illustrates that, as the number of cores

increased, the average throughput (for 100 tasks) also
increased. Here, the average throughput was almost same

when using 1, 2, 4, or 8 cores, but there was a change in

the average throughput percentage with 16 and 32 cores.

However, SJF and SRT are still close to each other.

Fig.5. Avg turnaround time for 100 tasks

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4301 5

In this figure, RR holds the highest average turnaround

time, compared to the other algorithms, at different

numbers of cores. The average turnaround time went down

as the number of cores increased see figure [5].

Fig.6. Avg waiting time for 100 tasks

Figure 6 demonstrates that the average waiting time

dropped as the number of cores went up. Furthermore, RR

had the maximum average waiting time with all cores,

while FCFS had the second highest average waiting time.

The other algorithms (SJF, SRT) had almost the same

performance.

In the following figures, we evaluate our algorithms with
different numbers of tasks using 8 cores:

Fig.7. Avg utilization for 8 Cores

The average utilization was less than 62% in the case of
only 10 tasks. However, when increasing the number of

tasks, the curve of average utilization also increased for all

algorithms.

Fig.8. Avg throughput for 8 Cores

The average throughput decreased when we had more

tasks to execute. When executing 80 tasks or more, the

average throughput for different scheduling algorithms

converged, and their percentage was minimized.

Fig.9. Avg turnaround time for 8 Cores

With 10, 20, and 40 tasks, the average turnaround time
was below 150 time units, but RR reached about 420 time

units with 80 tasks, while the others were below 350 time

units. There was a large jump when running 160 tasks; RR

took more than 1,900 time units, while SJF and SRT had

the lowest average waiting times in this case.

Fig.10. Avg waiting time for 8 Cores

With fewer than 20 tasks, the average waiting time was

less than 15 time units. However, this average increased

with the number of processes or tasks.

After carrying out the number of simulation, we were

able to draw the following conclusions:

-The shortest remaining time algorithm demonstrated the

lowest waiting and turnaround times, compared to the

other algorithms used.

-The average waiting time and average turnaround time

converged as the number of cores increased; the average

core utilization and average throughput also converged.

-The round-robin algorithm showed a higher rate of core

utilization and throughput than any other algorithm we

ran.
-Both the round robin and the first-come, first-served

algorithms could perform as a pair, as could the shortest-

job-first and the shortest remaining time algorithms could

also do the same.

VII. CONCLUSION

In this paper, we have discussed the importance of

multiprogramming, and how processes are scheduled

using different CPU-Scheduling algorithms. We have also

simulated, and evaluated those algorithms in case of multi-

core environment. In this paper, we visualized, and

compared the performance of CPU scheduling algorithms

with different parameters such as number of cores, and
total number for processes.

ISSN (Online) 2278-1021

ISSN (Print) 2319-5940

 International Journal of Advanced Research in Computer and Communication Engineering
Vol. 4, Issue 3, March 2015

Copyright to IJARCCE DOI 10.17148/IJARCCE.2015.4301 6

VIII. FUTURE WORK

There is a need for further study in simulation accounting

sleeping processes, I/O bursting, irregular process

execution, and other complexities. Moreover, an improved

algorithm should be designed to provide more

performance efficiency than other algorithms. More

variables and criteria also should be used to provide a

broader range for comparison. Finally, there is a need for

an in-depth study of variation in process generation, which

can be implemented to give more conclusive results when

scheduling algorithms.

REFERENCES
[1] SILBERSCHATZ, ABRAHAM, PETER GALVIN, and GREG

GAGNE. Operating System Concepts. 9th. New Jersey: John Wiley

and Sons, INC, 2012. Print

[2] Sabrian, F., C.D. Nguyen, S. Jha, D. Platt and F. Safaei, (2005).

Processing Resource Scheduling in Programmable Networks.

Computer communication, 28:676-687.

[3] U, Saleem, and Javed M. Y. Simulation of CPU Scheduling

Algorithms. Working paper no. 6893967. Vol. 2. Kuala Lumpur:

Dept. of Comput. Eng., Nat.Univ. of Scis. & Technol., Rawalpindi,

Pakistan, 2000.

 [4] Sun Huajin’, Gao Deyuan, Zhang Shengbing, Wang Danghui; ―

Design fast Round Robin Scheduler In FPGA‖,0-7803-7547-

5/021@2002 IEEE

[5] Sukanya Suranauwarat, ―A CPU Scheduling Algorithm Simulator‖,

October 10-13, 2007, Milwaukee, WI 37th ASEE/IEEE Frontiers in

Education Conference.

